Daniela Rohrbach-Schmidt

Imputation of missing signs for changes in real working hours in the BIBB Supplementary Task Survey to the BIBB/BAuA Employment Survey 2012

Version 1.0

BIBB-FDZ DATA AND
METHODOLOGICAL REPORT

No. 2/2015

Daniela Rohrbach-Schmidt

Imputation of missing signs for changes in real working hours in the BIBB Supplementary Task Survey to the BIBB/BAuA Employment Survey 2012
 Version 1.0

- Acknowledgement

I thank Holder Alda and Christian Gerhards for helpful comments.

- Data availability

The add-on variables described in this methodological report are implemented in the SUF of the Task Supplemental Survey, 2012, version 2.0. This SUF with the doi no. 10.7803/610.12.1.1.20 is hosted by BIBB-FDZ (http://www.bibb.de/en/15183.php).

- Note on version numbering

Changes from the previous version without major thematic relevance are documented by sequentially increasing the number after the dot (second level). Changes of thematic relevance, on the other hand, lead to a sequential increase of the number at the first level.

Bibliographic information from the Deutsche Bibliothek

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are accessible on the Internet at http://dnb.ddb.de.
© 2015 by Federal Institute for
Vocational Education and Training, Bonn

BIBB-FDZ Data and methodological Report 2/2015

Publisher:

Federal Institute for Vocationa
Education and Training, Bonn
Internet: www.bibb.de

Publication Management:

AB 1.4. Dr. Thomas Vollmer/Sigrid Koppenhöfer

Production:

W. Bertelsmann Verlag GmbH \& Co. KG

Distribution:

Federal Institute for Vocational Education and Training
Section 1.4 - Communication
Robert-Schuman-Platz 3
53175 Bonn
E-Mail: zentrale@bibb.de

Contact FDZ:

E-Mail: fdz@bibb.de
Tel.: +49 228 107-2041
Fax: +49 228 107-2020

Printed in Germany

ISSN: 2190-300X

This work is licensed under the Creative Commons License Attribution-NonCommercial-NoDerivs 4.0 Germany (CC BY-NC-ND 4.0). Copies and dissemination are permitted provided the author and title are acknowledged. Any changes or revisions as well as commercial use are prohibited.

For further information please visit our Creative-Commons-Infopage at www.bibb.de/cc-lizenz

This online publication has been registered and arcived with the German National Library. URN: urn:nbn:de:0035-0673-3

Internet: www.bib b.de/veroeffentlichungen/en

Downloads: www.bibb-fdz.de/en/53.php

Contents

1 Introduction 5
2 Valid cases and missing data generating process 7
3 Imputation 11
References 13
Appendix I Additional Tables 14
Appendix II Questionnaire extract from the BIBB Supplemental Task Survey to the Employment Survey 2012 17
Tables
Tab. 1: Original data on real weekly working hours in the BIBB Supplemental Task Survey to the Employment Survey 2012 (unweighted) 6
Tab. 2: Distributional measures of weekly working hours (wh) in the Supplementary Task Survey 8
Tab. 3: Logistic regression on missing working hours at time t_{2} for workers with changes in working time ($F 12=1 \&$ miss $=1$) 9
Tab.4: Measures of distribution of the original and imputed working time variable in the Supplementary Task Survey 2012 11
Tab. 5: Measures of distribution of the original (F12xx) und corrected (F12xx_neu) variable on changes in working hours and the newly generated working time at t_{2} (az_t2) 12
Tab.I: Sample data 14
Tab. II: Working time (WT) models for original, imputed and newly generated variables 14
Tab. III: Sample data (6 cases with miss=1 and values<= zero' on the newly generated working time variable (az_t2_neu) 16

1 Introduction

The BIBB Supplemental Task Survey to the Employment Survey 2012 (Alda et al. 2015) collects important characteristics of workers around one year after the main survey, i.e. the BIBB/BAuA Employment Survey 2012 (Hall et al. 2014). Both research data can be accessed as Scientific-Use-Files; the data are described in Alda et al. 2013 and Hall and Rohrbach-Schmidt 2013. Questionnaires and other documents can be downloaded online at the metadata repository of the BIBB-FDZ. The appendix shows the relevant questionnaire items for the imputation of the working hours as described below.

Important measures of the BIBB Supplemental Task Survey include wage changes and changes in contractual (F11Std, F11Min) ${ }^{1}$ and real working hours (F12Std, F12Min). After field work was finalized, it became obvious that the absolute amount but not the signs of the change in working hours had been collected. Thus, from the data, it cannot be derived whether the working hours have increased or decreased by the respective hours. However, the data include information on whether wages have increased or decreased since the main interview (and by how much), as well as information on the average working hours at the time of the main interview ($a z$), and indicators on whether the real working time has changed since then (F12). Additionally, for some respondents with changes in working hours, there are data on how many hours they regularly work each week at time t_{2} (F13Std, F13Min). On the basis of these and other measures, the missing signs for real working hours ${ }^{2}$ should be imputed because the weekly working hours are important variables for wage analyses. Table 1 gives an overview of the raw data.

Instead of imputing the signs directly, I impute the average real working hours at the time of the follow-up survey (t_{2}) in a two-step approach. Based on this imputed variable, the difference to the average real working hours at the time of the main interview $\left(\mathrm{t}_{1}\right)$ can be calculated so that the missing sign can be derived. One disadvantage of imputing the probability of a positive or negative sign by maximum-likelihood estimation is that this is less valid especially in the area of propensity-scores of around 0.5 . The imputation of the continuous working hours avoids this problem because (after the selection model in the first step) the estimation is based on a linear regression model (see below). Moreover, the data include valid cases for the real working hours at time t_{2} and relevant predictors for this measure. An additional advantage is that this approach allows the imputed signs to be validated by a comparison of the computed difference with the originally collected absolute values.

[^0]
Table 1

Original data on real weekly working hours in the BIBB Supplemental Task Survey to the Employment Survey 2012 (unweighted)

Var.name	F12	F12Std	F12Min	F12xx	F13Std	F13Min	F13xx
Question	Have your real weekly working hours changed since the main interview?	By how many hours...?		$\begin{aligned} & \text { F12Std+ } \\ & \text { F12Minl60 } \end{aligned}$	And how many hours do you regularly work per week ...?'		F13Std+ F13Minl60
Valid cases ${ }^{1}$	Yes: 778 (18.8\%)	763	764	761	$\begin{gathered} 69 \text { (9 \% of } \\ \text { F12 = Yes) } \end{gathered}$	$\begin{gathered} \mathrm{n}=69 \text { (} 9 \% \text { of } \\ \mathrm{F} 12=\mathrm{Yes}) \end{gathered}$	$\begin{gathered} 69 \text { (9 \% of } \\ \text { F12 = Yes) } \end{gathered}$
Mean	-	9.7	2.0	9.8	47.7	0.7	47.7
Range	-	0-85	0-60	0-85	5-96	0-30	5-96

Notes: ${ }^{1}$ Full questionnaire text is: "And how many hours do you regularly work on average per week in this job - including regularly performed overtime, excess work, and stand-by duty and so on?"

2 Valid cases and missing data generating process

Firstly, I inspect the valid cases with information on working hours at time t_{2} (F13Std, F13Min) and calculate the difference in working hours between t_{1} and t_{2}. I then compare the calculated difference with the value of $F 12 x x$ (the absolute changes in real weekly working hours) and evaluate whether both measures correspond or whether the absolute amounts are largely different.
The regular working hours per week at time t_{2} (F13Std, F13Min) were surveyed for respondents with changes in real working hours, whose internally ${ }^{3}$ generated weekly working time was above 70 hours. The objective of the additional survey question was to validate the exceptionally high working hours ${ }^{4}$. Comparing the calculated difference with the originally surveyed values (F12xx) for those 69 cases who state that real working hours have changed ${ }^{5}$, it becomes obvious that, in around one third of cases, the values of F12xx are equal to the values F13xx (see sample cases $\mathrm{I}_{1}, \mathrm{I}_{5}$ in table I in the appendix). In some cases, both values differ only in very few hours (and minutes). Especially in the case of high values of $F 12 x x$, it can be assumed that respondents have stated their weekly working hours instead of the number of hours that have changed.

These cases had a higher probability to fall into the group of respondents with more than 70 working hours and thus had a higher probability to be asked the regular weekly working hours question ($F 13 x x$). Likewise, the probability increased with higher values of $F 12 x x$ and higher average working hours at the time of the main interview (az). A comparison of cases with and without information on $F 13 x x$ with regard to these and other variables shows that neither group is a sample of the same population indicating a MAR-mechanism. Further down, the MARassumption is tested using a logistic model.
Firstly, I generate an indicator miss for cases with changes in working hours $(F 12=1)$ and missing and non-missing working hours at time t_{2}. In the follow-up survey, 3,359 of 4,356 respondents state that their working time has not changed since the main interview $(F 12=2)$. In the case of 778 respondents, working time has changed $(F 12=1) .213$ respondents ${ }^{6}$ are no longer in the labor force at time t_{2} (unemployed, retired, unemployable, on maternity leave or home maker) or full-time apprentices. 6 respondents state "don't know" or "no answer". Out of 778 cases with a different working time at $\mathrm{t}_{2} 69$ cases include information on how many hours these respondents work at time t_{2} (miss $=0$), and for 709 cases this information is missing (miss =1).

Table 2 shows the descriptive statistics of the working hour variables at times t_{1} and t_{2} for workers with and without changes in working hours and miss equal zero and one, respectively. Workers with changes in working time and missing information at time t_{2} have a working time at t_{1} that is slightly below the average of workers without changes (37.69 hrs . with a maximum of 70 hrs . as compared to 37.84 hrs . and a maximum of 99 hrs .). On the contrary, respondents with

[^1]changes in working hours and non-missing data, on average, have much higher working hours at t_{1} (53.17 hrs.) and t_{2} (47.7 hrs.).

Table 2
Distributional measures of weekly working hours (wh) in the Supplementary Task Survey

	Real working hours at $\mathrm{t}_{1}(a z)$				Real working hours at t_{2} (F13xx)			
	Mean	Stddev.	Min.	Max.	Mean	Stddev.	Min.	Max.
No changes in wh $\begin{aligned} & (F 12=2) \\ & \left(\mathrm{n}=3.351^{1 / 3} 3.359\right) \end{aligned}$	37.84	11.97	10	99	$=\mathrm{t}_{1}$	$=\mathrm{t}_{1}$	$=\mathrm{t}_{1}$	$=\mathrm{t}_{1}$
Changes in wh \& miss $=0(\mathrm{n}=69)$	53.17	13.35	30	80	47.74	17.96	5	96
Changes in wh \& miss $=1$ ($\mathrm{n}=707^{1} / 709$)	37.69	11.42	10	70	-	-	-	-
Changes in wh ($\mathrm{n}=776^{1} 1778$)	39.07	12.41	10	80	-	-	-	-
$\begin{aligned} & \text { Total } \\ & (\mathrm{n}=4,127 / 4,137) \end{aligned}$	38.07	12.06	10	99	-	-	-	-

The missing data generating process at time t_{2} is not random but - due to the filter instruction dependent on observed variables, namely the working hours at $\mathrm{t}_{1}(a z)$ and the size of the change in working hours ($F 12 x x$). These measures are themselves confounded by other measures, which determine the missing data (selection) mechanism. I use a logistic regression model to identify these (additional) covariates that determine the missing data process of the unobserved data.

Table 3 displays the results of the regression model. In this model, workers with changes in working hours and miss $=0$ represent the referent (case-wise deletion). The table includes logit coefficients and for statistically significant effects average marginal effects and discrete changes (AME/DC), respectively.

As expected, the model reveals significant logit coefficients for the working hour variables. Moreover, the probability of missing data on working hours at time t_{2} is lower for workers without any vocational degree and workers with a vocational degree as the highest qualification as compared to university graduates. The probability of miss $=1$ is also higher for freelancers as opposed to employees ${ }^{7}$. There are no significant differences between respondents who changed their employer or their job/their workplace within the same employer and workers with no such changes. Furthermore, workers without wage changes since the main interview do not differ from respondents with wage increases or decreases in the probability of missing information on working hours at time $\mathrm{t}_{2}{ }^{8}$. Likewise, neither are effects of sex, migrant status, place of residence (East/West Germany) statistically significant nor other characteristics that might affect working

[^2]time (age, experience, highest education, marital status, and presence of children in the household).

Table 3
Logistic regression on missing working hours at time t_{2} for workers with changes in working time ($\mathrm{F} 12=1$ \& miss $=1$)

	Logit	AMEIDC
Female worker (ref. male)	-0.14	
	(0.21)	
Residence in western part of Germany (ref. east. part)	0.11	
	(0.11)	
Age in years ${ }^{1}$	-1.00	
	(-0.71)	
Experience	0.05	
	(0.24)	
Experience squared/10	-0.01	
	(-0.26)	
Weekly working hours at $\mathrm{t}_{1}(a z)$	-0.32***	-0.006
	(-5.84)	
Size of change in working hours (F12xx)	-0.29***	-0.005
	(-6.82)	
Highest vocational degree (ref. university degree):		
No degree	-3.97^{*}	-0.073
	(-2.35)	
Firm-based/school-based vocational education degree	-2.23 *	-0.041
	(-2.13)	
Employment status (ref.: employee)2:		
Blue-collar worker	2.13	
	(1.67)	
Civil servant	-0.84	
	(-0.80)	
Self-employed worker	1.87	
	(1.53)	
Freelancer	5.58**	-0.068
	(3.09)	
Marital status: married (ref. unmarried/divorced)	0.68	
	(0.92)	
Children under age 18 in the household (ref. no children)	-1.42	
	(-1.65)	

(Continuing Table 3)	Logit	AMEIDC
Native language German (ref.: not German)	0.13	
	(0.08)	
Highest educational attainment (ref. foreign/other degree)':		
Hauptschulabschluss or equiv. (basic education certificate)	0.21	
	(0.10)	
Realschulabschluss/Mittlere Reife or equiv. (intermediate education certif.)	0.61	
	(0.30)	
(Fach-)hochschulreife, Abitur or equiv. (higher education entry qualification)	-0.38	
	(-0.20)	
Change of employer or workplace (ref. no change):	0.67	
Change of employer	(0.76)	
	0.51	
Change of workplace	(0.49)	
	-0.58	
Change in gross monthly wages (ref. no change):	(-0.84)	
Improvement	-0.44	
	(-0.45)	
Decline	39.74	
R^{2}	(1.87)	
	726	

Notes: 'The model additionally includes age ${ }^{2} / 10$ and age ${ }^{3} / 100$ (each not stat. sig.). ${ }^{2}$ Freie Mitarbeiter" (contractors, $n=4$) and "Mithelfende Familienangehörige" (family workers, $\mathrm{n}=3$) all have miss $=1$, meaning that no effects from these variables can be estimated and these cases are dropped from the analysis. ${ }^{3}$ Workers with "no schooling degree" ($\mathrm{n}=3$) all have miss=1, meaning that no effects from these variables can be estimated and these cases are dropped from the analysis. Results do not change substantially when another educational degree is set as the referent. t-statistics in parentheses. " $p<0.05$, " $p<0.01$, *** $p<0.001$.

3 Imputation

For imputation the two-step procedure described in Alda and Rohrbach-Schmidt (2011) is used, where the first step is a selection control and the real working hours at time t_{2} are estimated in the second step. Real working hours at time t_{2} are regressed on the variables considered in the logistic model of missing data, except the size of the change in working hours ${ }^{9}$.

It is thereby assumed that a good approximation for the actual but unobserved working time at time t_{2} is a result of adding a random error term e_{i} with standard deviation sigma to the estimated predicted value $x_{i} b^{10}$. The random value e_{i} is drawn so that $x_{i} b+e_{i}$ is larger than (equal to) ten hours because the sample of the main survey consists of workers with at least ten working hours. In addition, I use multiple imputation (1,000 repetitions) and utilize the mean for each case.

As shown below, the imputed distribution of the working time variable is compared with the original distribution. Table 4 shows the mean, the standard deviation and the range of the original and the imputed variable.

Table 4
Measures of distribution of the original and imputed working time variable in the Supplementary Task Survey 2012

	Mean	Standard deviation	Min.	Max.
Original values $(\mathrm{n}=69)$	47.7	17.9	5	96
Imputed values $\left(\mathrm{n}=704^{1}\right)$	39.8	14.4	12.1	113
Imputed variable $\left(\mathrm{n}=773^{1}\right)$	40.5	15.0	5	113

Notes: ${ }^{1}$ Cases with missing values on predictor variables were imputed by a model without these variables. I abstain from imputing the five cases with missing information on employment status $(n=3)$ or $a z(n=2)$ in an even more reduced model.

A comparison of the means reveals that the average working time is clearly reduced by the imputation approach. The method is thus able to adjust the observed high working time caused by the filter instruction. As expected from the imputation method, the standard deviation declines.

Finally, the results from OLS-regression models are compared where the imputed and original values are regressed on relevant covariates (see columns 2 and 3 in Table II in the appendix, for columns 4 see below). The models also include those cases with no change in working hours (in these cases working time at t_{2} is equal to working time at t_{1}). The set of variables clearly explains the variance in the working time variables. In most cases, the significance of estimates, the signs and effect sizes correspond. Notable differences between models result in effects from being em-

[^3]ployed as a civil servant as opposed to an employee and a decline in gross wages versus no change in gross wages ${ }^{11}$.

Based on the imputed variable, it is now possible to compute the change in working time as the difference between the working hours at the main interview and the follow-up survey. In a second step, the missing sign of $F 12 x x$ can be derived by the following simple rule: the new variable is equal to the original value (absolute amount) and receives a negative sign if the computed difference from the imputed working time at t_{2} to the working time at t_{1} has a negative value. Measures of distribution of the original ($F 12 x x$) und newly computed variable ($F 12 x x$ _neu) are displayed in Table 6. As it was originally intended with the surveyed data, it is now possible to generate the working time at time $t_{2}\left(a z_{2} t 2\right)$ as the sum of the working time at $t_{1}(a z)$ and the change in working hours by virtue of F12xx_neu. If one proceeds in this way, then six cases have values on $a z_{-} t 2$ equal to or below zero. Closer examination of these cases suggests that respondents specified their working time instead of the changed hours (see Table III in the appendix with values for these cases). Accordingly, the values for these cases were recoded into the values of $F 12 x x^{12}$. Descriptive statistics for this newly generated working time variable (az_t2) are also displayed in Table 5. Furthermore, column 4 in Table II in the appendix includes a model of $a z_{-} t 2$, thus the quality of this variable can be directly compared to the original and imputed working time variables.

Table 5

Measures of distribution of the original (F12xx) und corrected (F12xx_neu) variable on changes in working hours and the newly generated working time at t_{2} (az_t2)

	Mean	Standard dev.	Min.	Max.
Original variable F12xx (see Table 1, $\mathrm{n}=761$)	9.8	12.0	0	85
Recoded variable F12xx_neu $(\mathrm{n}=761)$	0.8	15.5	-85	+70
Newly generated working time at $\mathrm{t}_{2}\left(a z_{-} t 2\right):$ $a z+$ F12xx_neu ($\mathrm{n}=759^{\prime}$)	40.0	13.3	1.5	135

Notes: ${ }^{1} 2$ Missing values on $a z$. Includes six cases with corrected values.

Overall descriptive statistics and regression results show a good quality of the finally computed working time variable for the Supplementary Task Survey to the Employment Survey 2012.

The research data of the BIBB-Supplementary Task Survey to the Employment Survey 2012 include the imputed and newly generated variables az_t2_imp, F12xx_neu, az_t2 und indic_korr in addition to the original variables.

[^4]
References

Alda, Holger; Rohrbach-Schmidt, Daniela; Tiemann, Michael (2013): BIBB Supplemental Task Survey to the Employment Survey 2012. BIBB-FDZ Data and Methodological Reports 4/2013.
Alda, Holger; Rohrbach-Schmidt, Daniela; Tiemann, Michael (2015): BIBB Supplemental Task Survey to the Employment Survey 2012. suf_2.0; Research Data Center at BIBB (ed.; data access); Bonn: Federal Institute for Vocational Education and Training. doi: 10.7803/610.12.1.1.20

Alda, Holger; Rohrbach-Schmidt, Daniela (2011): Imputation fehlender Werte für die Einkommensvariable in der BIBB/BAuA-Erwerbstätigenbefragung 2006. BIBB-FDZ Daten- und Methodenberichte 2/2011.
Hall, Anja; Rонrвach-Schmidt, Daniela (2013): BIBB/BAuA Employment Survey of the Working Population on Qualification and Working Conditions in Germany 2012. BIBB-FDZ Data and Methodological Reports 1/2013.
Hall, Anja; Siefer, Anke; Tiemann, Michael (2014): BIBB/BAuA Employment Survey of the Working Population on Qualification and Working Conditions in Germany 2012. suf_3.0; Research Data Center at BIBB (ed.,) GESIS Cologne (data access); Bonn: Federal Institute for Vocational Education and Training. doi:10.7803/501.12.1.1.30

Appendix I Additional Tables

Table I
Sample data

	$a z$	F12xx: F12Std + F12Min/60	F13xx: F13Std + F13Min/60	Diff: F13xx-az
Sample case	Real working hours at t_{1}	Change in real working hours	Real working hours at t_{2}	Difference real working hours $t_{2}-t_{1}$
I_{1}	43	$\mathbf{5 0}$	$\mathbf{5 0}$	+7
I_{2}	80	12	92	+12
I_{3}	70	25	$\mathbf{4 5}$	$\mathbf{- 2 5}$
I_{4}	70	15	55	-15
I_{5}	40	$\mathbf{4 5}$	$\mathbf{4 5}$	+5
\ldots				
\ldots				

Table II
Working time (WT) models for original, imputed and newly generated variables

	WT t_{2} (Imputation)	$\begin{gathered} \text { WT } \mathrm{t}_{2} \\ \text { (original data) } \end{gathered}$	$\begin{gathered} \text { WT } t_{2} \\ \text { (az_t2_neu) } \end{gathered}$
Age in years ${ }^{1}$	-0.85	-0.72	-0.73
	(-1.67)	(-1.37)	(-1.49)
Experience	$0.65{ }^{* * *}$	$0.66{ }^{* * *}$	$0.57^{* * *}$
	(6.35)	(6.21)	(5.68)
Experience squared/10	$-0.08{ }^{* * *}$	$-0.07^{* * *}$	$-0.06{ }^{* * *}$
	(-4.40)	(-3.66)	(-3.21)
Highest vocational degree (ref. university degree): No degree	-8.27********	-4.91*******)	-6.05***
	(-9.89)	(-5.72)	(-7.45)
Firm-based/school-based vocational education degree	$-6.18^{* * *}$	$-3.06{ }^{* *}$	$-4.34^{* *}$
	(-11.09)	(-5.25)	(-8.02)
Employment status (ref.: employee): Blue-collar worker	-0.15	-0.17	-0.26
	(-0.29)	(-0.31)	(-0.50)
Civil servant	1.04	$2.38{ }^{* * *}$	$1.68{ }^{* * *}$
	(1.56)	(3.52)	(2.60)
Self-employed worker	7.08***	7.22***	$6.92{ }^{* * *}$
	(10.14)	(10.18)	(10.20)
Freelancer	$9.33^{* *}$	$3.43^{* *}$	$5.05{ }^{* * *}$
	(7.93)	(2.70)	(4.43)

(Continuing Table II)

	WT t_{2} (Imputation)	WT t_{2} (original data)	$\begin{gathered} \text { WT } \mathrm{t}_{2} \\ \text { (az_t2_neu) } \end{gathered}$
Contractors ("Freier Mitarbeiter")	-4.77	-3.04	-3.22
	(-1.53)	(-0.87)	(-1.07)
Family workers ("Mithelfende Familienangehörige")	-2.66	-4.36	-2.88
	(-0.92)	(-1.44)	(-1.03)
Marital status: married (ref. unmarried/divorced)	$-1.67^{* *}$	$-1.39 * *$	$-1.47^{* * *}$
	(-4.26)	(-3.44)	(-3.89)
Children under age 18 in the household (ref. no children)	-3.21 ***	$-3.48{ }^{* * *}$	$-3.40{ }^{* * *}$
	(-7.21)	(-7.54)	(-7.87)
Native language German (ref.: not German)	0.46	-0.76	-0.41
	(0.53)	(-0.83)	(-0.48)
Highest educational attainment (ref. foreign/other degree): Hauptschulab. or equiv. (basic educ. c.)	3.35	4.34	3.91
	(1.15)	(1.48)	(1.38)
Realschulabschluss/Mittlere Reife or equiv. (intermediate education certif.)	2.57	3.57	3.18
	(0.88)	(1.22)	(1.13)
(Fach-)hochschulreife. Abitur or equiv. (higher education entry qualification)	1.46	4.47	3.13
	(0.50)	(1.51)	(1.10)
No vocational degree	4.61	5.06	$6.78{ }^{*}$
	(1.32)	(1.42)	(2.00)
Change of employer or workplace (ref. no change): Change of employer	0.02	-0.34	0.75
	(0.02)	(-0.28)	(0.83)
Change of workplace	$2.93 *$	$2.75{ }^{* *}$	$2.82{ }^{* *}$
	(2.64)	(2.07)	(2.62)
Change in gross monthly wages (ref. no change): Improvement	$2.73{ }^{* * *}$	$1.96{ }^{* * *}$	$2.23 * *$
	(6.49)	(4.46)	(5.45)
Decline	$-3.96{ }^{* * *}$	0.65	$-2.56{ }^{* *}$
	(-4.44)	(0.62)	(-2.95)
Residence in western part of Germany (ref. east. part)	$-2.14{ }^{* * *}$		$-2.28{ }^{* * *}$
	(-4.43)	(-4.84)	(-4.88)
Female worker (ref. male)	-6.52***	-8.70********)	-7.41********)
	(-17.36)	(-22.47)	(-20.36)
Constant	55.48***	53.17***	53.72***
	(6.78)	(6.27)	(6.78)
N	4021	3338	4006

Notes: 'The model additionally includes age ${ }^{2} / 110$ and age ${ }^{3} / 100$ (each not stat. sig. except age ${ }^{3}$ in model of $\left.a z_{-} t 2 _n e u\right)$. t-statistics in parentheses. * $p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$.

Table III
Sample data (6 cases with miss $=1$ and values<= zero ${ }^{1}$ on the newly generated working time variable (az_t2_neu)

	$a z$	$\begin{aligned} & a z+t 2 _i m p \\ & \text { (rounded) } \end{aligned}$	$\begin{aligned} & \text { diff_az_imp } \\ & \text { (az_t2_imp-az, } \\ & \text { rounded) } \end{aligned}$	F12xx	F12xx_neu	$\begin{gathered} a z_{-} t 2 \\ \left(a z+F 12 x x_{-} n e u\right)^{1} \end{gathered}$
I_{1}	20	15.5	-4.5	25	-25	-5
I_{2}	20	18.6	-1.4	30	-30	-10
I_{3}	45	36.0	-9.0	60	-60	-15
14	20	16.3	-3.7	24	-24	-4
I_{5}	40	35.8	-4.2	40	-40	0
I_{6}	20	14.5	-5.5	20	-20	0

Notes: ${ }^{1}$ These six cases were finally recoded into their values of $F 12 x x$.

Appendix II Questionnaire extract from the BIBB Supplemental Task Survey to the Employment Survey 2012

The complete questionnaire can be downloaded online at the metadata repository of the BIBBFDZ

F12	Has your actual weekly working time (including regular overtime worked, extra work, on-call duty, etc.) changed?
	INT: On request: in the main survey that was [<az>] hours
	<1> Yes, it has changed $\quad \Rightarrow$ continue with F12xx
	$<2>$ No, it is unchanged $\quad \Rightarrow$ continue with F14
	<8> Not known/Not specified $\quad \Rightarrow$ continue with F13xx
F12xx	By how many hours per week has your actual weekly working time changed?
$\begin{aligned} & \text { if F12 } \\ & =\langle 1\rangle \end{aligned}$	INT: What we are interested in here is the difference between the previous number of hours actually worked and the current number of hours actually worked. INT: Do not convert full hours!
	$!$ _ hours <F12Std> \quad ! _ minutes <F12Min> $\quad \Rightarrow$ if $112 x x+a z>70$
	<98> Not known <99> Not specified $\quad \Rightarrow$ continue with F14
F13xx if F12xx + display from	And how many hours do you normally work on average per week in this activity - including regular overtime worked, extra work, on-call duty, etc.? INT: Do not convert full hours!
F12 >70 or if F12	$!$ _ hours <F12Std> \quad _ minutes <F12Min>
F12 $=$ <8>	<98> Not known <99> Not specified

Federal Institute for Vocational
Education and Training
Robert-Schuman-Platz 3
53175 Bonn
Tel.: (02 28) 107-0
Fax: (02 28) $1072976 / 77$
Internet: www.bibb.de
E-Mail: zentrale@bibb.de

BIBB

Researching
Advising
Shaping the future

[^0]: ${ }^{1}$ Variable names are printed in italics and variables are named as in the SUFs of the main and follow-up survey, respectively.
 ${ }^{2}$ In the present paper, the procedure for the imputation of real working hours is described, which allows the deduction of the missing sign of the change in real working hours. No imputation is performed for the empirically less frequent case of changes in contractual working hours ($n=394$). As opposed to the real working hours, there are no data on regular contractual working hours for workers who state that their contractual working hours have changed.

[^1]: 3 Sum of F12xx and real working hours at time $t_{1}(a z)$.
 4 Due to an incorrect filter instruction in the CATI program at the beginning of the field work, for all workers without a change in working hours the actual working hours (F13Std, Min) were surveyed. After this was noticed the filter was corrected. The 767 cases without changes in working hours as stated in F12 but with information on F13Std, Min are not considered in the imputation model.
 ${ }^{5}$ For workers who state that their working time is the same as at the time of the main interview (F12=2, nein), the difference between weekly hours at t_{2} and t_{1} should be zero. In 57% of all cases, working hours at both measures differ by a maximum of one hour at maximum. In the remaining 43% of cases, the difference is larger than one hour.
 6 Figures are based on the original data. In the SUF (http://dx.doi.org/doi:10.7803/610.12.1.1.20) all 220 retired workers or full-time apprentices were consequently filtered on this variable (see Alda et al. 2013, section 6.3).

[^2]: ${ }^{7}$ I use the employment status at time t_{2} for the regression model of miss (based on information from Stib and F1).
 ${ }^{8}$ I do not use wages at time t_{2} as a predictor for the missing data and the working hours. Firstly, I want to avoid endogeneity problems (the working hours are required for analyses of hourly wages). Secondly, one can assume that unobserved heterogeneity in the wage variable (especially in the case of high wage changes) might bias the linear estimate of the slope for wages. The working hours at t_{1} enters the model as a linear predictor as well as $2^{\text {nd }}$ and $3^{\text {rd }}$ degree polynomials because workers with very high/low working hours at time t_{1} tend to reduce/ increase their working time.

[^3]: ${ }^{9}$ The size is directly linked to the missing process. However, it is unclear how the size is associated with the working time. Moreover, there is neither a significant relationship nor does the inclusion improve the model fit and explained variance.
 ${ }^{10}$ Sigma is known from the observed distribution of the working time distribution.

[^4]: ${ }^{11}$ Workers with changes in working time experience a decline in wages much more often than workers with no changes. Workers with changes are, however, underrepresented in the model in column 3 (original data).
 ${ }^{12}$ In addition to $F 12 x x _n e u$, the research data include an indicator for these six cases (indic_korr), meaning that further recodes can be performed easily by data users.

